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SUMMARY:

Hemoglobin (Hb) has been demonstrated to be neurotoxic when injected into the cerebral
cortex, jn.vivo. However, associated systemic factors such as ischemia and epileptogenesis
have limited investigations of Hb toxicity in the intact central nervous system {CNS). In this
study, the neurotoxicity of human Mb was assessed in mixed neuronal and glial neocortical
cell cultures derived from fetal mice. Exposure of cultures to Hb for 24-28 hours produced
widespread and concentration-dependent neuronal death (ECso 1-2.5 uM), without injuring
glia. Brief exposures (1-2 hours) were not toxic. Neuronal deAath was completely blocked
by the 21 -aminosteroid U74500A, the antioxidant Trolox, and the ferric iron chelator
deferoxamine. The results of these experiments suggest that, in this system,
chromatographically pure Hb is a potent neurotoxin, and that Hb neurotoxicity may

. contribute to secondary injury processes after trauma and intracranial hemorrhage.




Exposure of central neurons to extravascular blood occurs in many acute injury

processes, including intraparenchymal hemorrhages, contusions, and hemorrhagic
infarctions. Much of the neuronal death occurring in these processes has been attributed to
the primary injury or to secondary ischemia, but a direct neurotoxic effect of blood has also
been hypothesized [19, 20]. A possible mediator of neurotoxicity is hemoglobin (Hb), which
is highly concentrated in erythrocytes and accounts for most of the 8-10 millimolar iron
concentration in whole blood.

Under normal circumstances, free Hb is effectively sequestered by haptoglobin and
does not reach toxic levels [8, 9] . However, in some situations, the release of large amounts
of Hb from lysed erythrocytes may saturate haptoglobin, exposing neurons and glia to Hb
and its breakdown products. In vivo studies support a possible neurotoxic effect of
parenchymal Hb; in rats, intracortical injection produces cavitary lesions and gliosis at
injection sites [19]. However, Hb neurotoxicity is difficuit to quantify in vivo due to the
potent vasospasm [16] and seizure activity [19] that may accompany its administration. In
the present study, we utilized a primary murine neocortical cell culture system to investigate
Hb neurotoxicity in an environment free of complicating systemic variables.

Humar: Hb, purified by high pressure liquid chromatography according to the
technique of Christensen et al. [5], was prepared in the Hb production facility at the
Letterman Army institute of Research [28]. The final product was sterile filtered, formulated
in Ringer's acetate, and stored at -80° C. Hemoglobin concentrations were determined
using Drabkin's solution [26] and metHb concentrations at the time of use were determined
to be less than 4.0% according to the method of Evelyn and Malloy [6, 11]. Endotoxin
concentration was determined to be < 0.1 EU/ml.  All Hb concentrations are expressed as

the concentration of tetramer.



Mixed cortical cell cultures, containing both neurcns and glia, were prepared with
modification of methods described by Choi et al. [4]. After halothane anesthesia, pregnant
Swiss-Webster mice (15-16 days gestation) were euthanized by cervical dislocation.
Embryos were rapidly removed and decapitated, and the neocortex was dissected free and
incubated in medium containing 0.09% acetylated trypsin af 37°C for one hour. Tissue was
then suspended in plating medium consisting of Eagle’s minimal essential medium (MEM),
5% heat-inactivated horse serum, 5% fetal bovine serum, glutamine (2mM), and glucose
(23 mM). After trituration through a flame-polished Pasteur pipette, cells were diluted in
additional plating medium and seeded on confluent glial cultures in 24-weil muitiwell plates
(Falcon) at a density of 2.2 hemispheres/plate. Cultures were incubated at 37°C in a

humidified atmosphere containing 5% CO,. Culture medium was partially changed twice

weekly with medium containing 10% horse serum and lacking fetal bovine serum.

Nonneuronal cell division was inhibited at 6-9 days in vitro (DIV) by addition of 10-5M

cytosine arabinoside.

Cortical glial cultures were prepared from Swiss-Webster mice at postnatal day 1-3.
After halothane anesthesia, mice were decapitated, and heads were submerged in 70%
ethanol for 3-4 minutes. Dissection and dissociation were as described above
for mixed cultures, and cells were diluted in plating medium containing10% fetal bovine
serum, 10% horse serum, 2 mM giutamine, and epidermal growth factor (10 ng/ml). The cell
suspension was plated on 24-well Primaria (Falcon) multiwell plates at a density of 0.5
hemisphere per plate.

Exposure of mixed neuronal and glial cultures to Hb was carried out at 13-16 DIV in

a defined solution consisting of MEM plus glucose (25 mM), which was substituted for

culture medium by triple exchange. After addition of Hb alone or with drugs, cultures were
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incubated at 37°C in a 5% CO; atmosphere. Neuronal injury was estimated in all
experiments by examination of cultures with phase-contrast microscopy at 100-200x and
was quantified by measurement of lactate dehydrogenase (LDH) in the culture medium at -
the end of the exposure period. {13].

Exposure of cultures to Hb for 24-28 hours produced significant neuronal injury that
was concentration dependent between 0.025 and 25 uM (ECso 1-2.5 uM). Exposure to 25
1M Hb resuited in degeneration of 80-100 % of neurons (Fig. 1). The underlying glial
monolayer, in contrast, remained intact and appeared morphologically normal through
several days of exposure. Experiments using pure glial cultures revealed no evidence of
Ho-induced glial injury or LDH release.

Briet exposure to Hb was consistently well tolerated by both neurons and glia. A one
hour incubation in 25 uM Hb followed by washout into MEM produced little neuronal injury
over the subsequeﬁt 23 hours (Fig. 2). Some variation was noted in the exposure time
required to produce neuronal injury, particularly between cuitures prepared with different
lots of serum. In most experiments, many neurons were swollen after an eight hour
exposure period, and subsequently degenerated over the next several hours.

To test the hypothasis that Hb neurotoxicity is mediated by oxidation of cellular

components, we exposed cultures to Hb in the presence of Trolox or the 21-aminosteroid

U74500A (Fig. 2). Trolox, a water-soluble analog of a-tocopherol {29], consistently

attenuated the neuronal injury produced by 24-28 hour exposure to 25 uM Hb, with nearly
complete protection noted at 10 uM Trolox (Fig. 3). U74500A, an inhibitor of lipid
peroxidation which may also chelate iron [3], was likewise effective but more potent.

Significant neuroprotection was noted at 100 nM and was complete at 1 uM. At 10 nM, no



effect was seen. U74500A was prepared in a stock solution containing dimethylsulfoxide
(DMSO). No signiticant effect was noted from the DMSO vehicle alone at the concentration
used in these expériments (0.1%).

Lipid peroxidation can be initiated by highly reactive hydroxyl radical (OH.), and one
mechanism of OH. formation is via the iron-catalyzed Haber-Wsiss reaction [2]. To assess
the role of OH. formation in Hb neurotoxicity, we used deferoxamine, which is a ferric iron
chelator that also scavenges OH. [10]. Neuronal injury was blocked by deferoxamine in a
concentration-dependent fashion, and near complete protection was provided by 10 uM
(Fig. 4).

The precise molecular events precipitating neuronal death after Hb exposure remain
‘undefined. Hemoglobin is capable of releasing reactive iron that can catalyze the formation
of OH- [21, 7). Once formed, OH. would most likely react in the immediate vicinity of the site

of production and, if formed in the extracellular space, would have limited access to the
intracellular organelles [24]. Interaction of OH. with cell membrane phospholipids may
initiate free radical chain reactions within the membrane, ieading to decreased membrane
fluidity and loss of membrane integrity [23]. Alternatively, OH- may interfere with the activity
of membrane-bound enzymes, either by direct protein oxidation or disruption 6f surrounding
membrane phospholipids. Anderson and Means reported inhibition of spinal cord Na+/K+

ATPase in vivg by iron salts, and this effect was prevented by high dose

methylprednisolone, a-tocopherol, or selenium [1]. Leclerc et al., noted potent inhibition of

erythrocyte membrane Ca2+/Mg2+ATPase in vitrg by 100 uM ferric heme or nonheme iron
[14, 15). Even partial inhibition of membrane cation pumps may have dire consequences for
neurons, which must maintain steep ionic gradients and recover promptly from

depolarization.




Regardless of the exact mechanism of Hb-dependent neuronal injury, the results of
the current experirﬁents suggest that exposura of neurons to Hb may be undesirable and
that it may be beneficial to clear extravascular Hb as rapidly as possible. Hemoglobin is
| normally cleared by the plasma protein haptoglobin, which forms an irreversible complex

with Hb and facilitates its uptake by the liver [12]. This clearance process is extremely
efficient; the plasma half-life of haptoglobin alone in human plasma is 3.5 days [12].
’ However, when bound to Hb, the plasma hait-life of the complex is approximately 10
~minutes [12]. In addition to assisting the clearance of free Hb, haptoglobin also attenuates
the pro-oxidant effects of Hb (8]. Thus, haptoglobin may play an important role in the control
of Hb-dependent tissue damage. |

In the present experiments, exposure of cuitures to a Hb concentration approximating
1% of that present in human blood produced marked neuronal injury. These results should
be extended to situations jn_vivg with some caution. During the course of these
experiments, neurons were deprived of the usual antioxidant defenses normally present in
extracellular fluid, e.g., plasma or cerebrospinal fluid [25, 27]. The presence of these

constituents may counterbalance the loss of intracellular central nervous system (CNS)
antioxidants such as reduced glutathione, a-tocopherol, and ascorbate, all of which decline
precipitously after trauma and ischemia [17, 18, 22]. However, high Hb concentrations may
eventually overwhelm any remaining endogenous defenses and produce neurotoxicity.

Pharmacologic strategies aimed at attenuating such injury may be of value in the

management of CNS trauma and hemorrhage.
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EIGURE LEGENDS

Fig. 1. Concentration dependence of hemoglobin neurotoxicity. Sister cultures were
exposed to indicated concentrations of hemoglobin for 24-28 hours. LDH in the culture
media was measured at the end of the experiment (mean + S.E.M., n = 8 cultures for each
condition). - LDH in this and subsequent figures was scaled to the mean value released by
cultures exposed to 25 uM hemoglobin (100%). Asterisk indicates significant difference

from sham wash control (P < 0.05, Student-Newman-Keuls test).

Fig. 2. Time course of hemoglobin neurotoxicity. Sister cultures were exposed to
hemoglobin 25 uM for indicated time. LDH in the culture media was measured prior to
washout and at 24 hours, and results were summed (mean + S.E.M., n = 4 for each

condition).

Fig. 3. Antioxidant blockade of hemoglobin neurotoxicity. Sister cultures were exposed to
hemoglobin 25 uM for 24-28 hours either alone (CTRL) or in the presence of indicated
concentrations of Troloxor U74500A. LDH in the culture media was measured at the end of
the exposure period (mean + S.E.M., n = 8 for each condition). Asterisk indicates significant

difference from control (P < 0.05, Student-Newman-Keuls test).

Fig. 4. Iron dependence of hemoglobin neurotoxicity. Media LDH (mean + S.EE.M., n=8)in
sister cultures after 24-28 hour exposure to hemoglobin 25 uM in the presence of indicated
concentrations of deferoxamine, scaled to LDH released in control cultures exposed to

hemoglobin alone (=100). Approximate ICsq for deferoxamine = 3uM.

14
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SUMMARY:

Hemoglobin (Hb) has been demonstrated to be neurotoxic when injected into the cerebral
cortex, in vivo. However, associated systemic factors such as ischemia and epileptogenesis
have limited investigations of Hb toxicity in the intact central nervous system (CNS). In this
study, the neurotoxicity of human adult Hb was assessed in mixed neuronal and giial
neocortical cell cultures derived from fetal mice. Exposure of cultures to hemoglobin for 24-
28 hours produced widespread and concentration dependent neuronal death (ECso 5-10
uM), without injuring glia. Brief exposures (1-2 héurs) were well tolerated. Neuronal death
was completely blocked by the 21-aminosteroid U74500A, the antioxidant Trolox, and the
ferric iron chelator deferoxamine. The results of these experiments suggest that, in this
system, hemoglobin is a potent neurotoxin and that hemoglobin neurotoxicity may
contribute to secondary injury processes after trauma and intracranial hemorrhage.




: Exposure of central neurons to extravascular blood is a feature common'to many
acute injury processes, including intraparenchymal hemorrhages, contusions, and
hemorrhagic infarctions. Although much of the neuronal death occurring in these processes
has been attributed to the primary injury or to secondary ischemia, a direct neurotoxic effect
of blood has been hypothesized [19, 20] A possnble mediator of any such neurotoxicity is
hemoglobin, which is presentiin erythrocytes in high concentration and accounts for most of +
8-10 millimolar iron concentration in whole blood.

Under normal circumstances, any free hemoglobin is effectively sequestered by
haptoglobin, and toxicity is likely attenuated [8, 9] . However, the release of large amounts of
hemoglobin from lysed erythrociltes may saturate haptoglobin in the cellular
microenvironment, and neurons and glia may be directly exposeg‘to hemoglobin and its
breakdown products. In vivo studies support a possible neurotoxic effect of parenchymal
hemoglobin; in rats, intracortical injection produces cavitary lesions and gliosis at injection
sites [19]. However, hemoglobin neurotoxicity is difficult to quantify in such in vivg systems
due to the potent vasospasm [16] and seizure activity [19] that may accompany its
administration. In the present study, we utilized a primary murine neocortical cell culture
system, in order to investigate hemoglobin neurotoxicity in a highly controlled environment
free of complicating systemic variables.

All hemoglobin solutions were prepared in the pilot-plant productian facility at the
Letterman Army Institute of Research. Human Ao hemoglobin was purified by high pressure
liquid chromatography according to the technique of Christensen et al. [5]. Hemoglobin
concentrations were determined using Drabkin’s solunon [24] and methemoglobin
concentrations were determined. accordmg to the method of Evelyn and Malloy [6, 11] to be
less than 4. 0% Al hemoglobin concentrations are expressed as the concentration of
heme, or hemoglobm monomer. _

Mixed cortical cell cultures, containing both ineurons and giia, were prepared with
madification of methods described by Choi et al. [4]. After halothane anesthesia, pregnant
‘Swiss-Webster mice (15-16 days gestation) were suthanized by cervical dislocation. N
Embryos were rapidly removed and decapitated, and the neocortex was dissected free and
incubated in media containing 0.09% acetylated trypsin at 37°C for one hour. Tissue was
then suspended in plating media consisting of Eagle's minimal essential medium, 5%
heat-inactivated horse serum, 5% fetal bovine serum, glutamine (2mM), and glucose (21




mM). After trituration through a flame-polished Pasteur pipette, cells were diluted in
additional plating media and plated on confluent glial cultures in 15 mm multiwell plates
(2.2 hemispheres/plate). Cuitures were incubated at 37°C in a humidified atmosphere
containing 5% CO,. Culture media was partially changed twice weekly with media identical
to plating media but lacking fetal serum. Nonneuronal cell division was inhibited at 6-9
days in vitro (DIV) by addition of 10-5 M cytosine arabinsside. Cortical glal cultures were
prepared from neonatal Swiss-Webster mice. Dissection and dissociation were as
described above for mixed cultures, except that plating media contained 10% fetal bovine
serum, 10% horse serum, and epidermal growth factor (10 ng/ml). The cell suspension was
plated on 15 mm Primaria (Falcon) multiwell plates at a density of 0.5 hemispheres per
plate.

Exposure to hemoglobin was carried out in a defined solution consisting of MEM plus
glucose (25 mM), which was substituted for culture media by triple exchange. After addition
of hemoglobin alone or with drugs, cultures were incubated at 37°C in a 5% CO.

atmosphere. Neuronal injury was estimated in all experiments by examination of cultures
with phase-contrast microscopy at 100-200x, and was quantified by measurement of lactate
dehydrogenase (LDH), released by injured and necrotic cells, in the culture media at the
end of the exposure period [13]. Cultures were used for these experiments at 13-16 DIV.

Exposure of cultures to hemoglobin for 24-28 hours produced significant neuronai
injury which was concentration dependent between 0.1 uM and 100 uM (ECso 5-10 pM).
Exposure to 100 uM hemoglobin resulted in degeneration of 80-100 % of neurons (Fig. 1).
The underlying glial monolayer, in contrast, remained intact and appeared morphologically
normal through several days of exposure. Experiments using pure glial cultures revealed
no evidence of hemoglobin-induced glial injury or LDH reiease.

Brief exposure to hemoglobin was consistently well tolerated by both neurons and
glia. A one hour incubation in the presence of 100 uM hemoglobin produced no significant
neuronal injury over the subsequent 23 hours (Fig. 2). Some variation was noted in the
exposure time required to produce neuronal injury, particularly between cuitures prepared
with different lots of serum. In most experiments, many neurons were swollen after an eight
hour exposure period, and subsequently degenerated to debris over the next several hours.

In ord'ef:to test the hypothesis that hemoglobin neurotoxicity is mediated by oxidation
of cellular components, we exposed cultures to hemoglobin in the presence of Trolox or the
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21-aminosteroid U74500A (Fig. 2). Trolox, a water-soluble analog of a-tocopherol [26],

consistently attenuated the neuronal injury-produced by 24-28 hour exposure to 100 uM
hemoglobin, with near complete protection noted at 10 uM Trolox (Fig. 3). U74500A, an
inhibitor of hpnd peroxidation which may chelate iron (3], was also effectnve and more potent.

- Sngmficant neuroprotectxon was noted at a concentration of 100 nM which was complete at

1 uM. At 10 nM, no effect was seen. U74500A was prepared in a stock solution containing
dimethylsulfoxide (DMSO). No significant effect was noted from the DMSO vehicle alone at
the concentration used in these experiments (0.1%).

Lipid peroxidation is likely initiated by highly reactive hydroxyl radical (OH.).
Formation of OH. likely occurs via the iron-catalyzed Haber-Weiss reaction [é‘, Minotti, 1987
#46). In order to assess the role of OH. formation in hemoglobin neurotoxicity, we used
deferoxamine, which is a ferric iron chelator that also scavenges OH. [10]. Neuronal injury
was blocked by deferroxamine in a concentration-dependent fashion, and complete
protection was provided by 10 uM (Fig. 4).

The precise molecular events precipitating neuronal death after hemoglobin
exposure remain undefined. Hemoglobin is capable of releasing reactive iron that can
catalyze the formation of OH. [21, 7]. Once formed, OH. would most likely react in the
immediate vicinity of the site of production and, if formed in the extracellular space, would
have limited access to the intracellular organelles [23]. Interaction of OH. with cell
membrane phospholipids may initiate free radical chain reactions within the membrane,
leading to decreased membrane fluidity and loss of membrane integrity [22]. Alternatively,
OH. may interfere with the activity of membrane-bound enzymes, either by direct protein
oxidation or disruption of surrounding membrane phospholipids. Anderson and Means
reported inhibition of spinal cord Na+/K+ ATPase n vivg by iron salts which was prevented
by high dose methylprednisolone, a-tocopherol, or selenium [1]. Leclerc et al., noted
potent inhibition of erythrocyte membrane Ca2+/Mg2+ATPase in vitro by 100 uM ferric heme
or nonheme iron [14, 15]). Even partial inhibition of membrane cation pumps would !‘kely
have dire consequences for neurons, which must maintain steep ionic gradients and
recover promptly from depolarization.

Regardless of the exact mechanism of hemoglobin-dependent CNS damage, the
results of the current experiments suggest that exposure of the neurons to hemoglobin may




be undesirable and that it may beneficial to clear hemoglobin from extravascular spaces as
rapidly as possible. A normal mechanism of hemoglobin clearence is mediated by the
plasma protein haptoglobin, which forms an irreversible complex with hemoglobin and
facilitates its uptake by the liver [12]. This clearence process is extremely efficient: the
plasma haif-life of haptoglobin alone in human plasma is 3.5 days [12]. However, when
bound to hemoglobin, the plasma half-life of the complex is approximately 10 minutes [12].
In addition to assisting the clearence of free hemoglobin, haptoglobin also minimizes or
completely blocks the pro-oxi&éht effects of hemoglobin [8). Thus, haptoglobin may play an
important role in the control of hemoglobin-dependent tissue damage.

In the present experiments, exposure of cultures to a hemoglobin concentration
approximating 1% of that present in human blood produced marked neuronal injury. These
results should be interpolated to situations in vivg with some caution. During the course of
these experiments, neurons were deprived of the usual antioxidant defenses normally
present in extracellular fluid, e.g. plasma [25]. The presence of these constituents may
counterbalance the loss of endogenous CNS antioxidants such as reduced glutathione,
a-tocopherol, and ascorbate, all of which decline precipitously after trauma and ischemia
[17, 18, 27). However, high hemoglobin concentrations may eventually overwhelm any
remaining endogenous defenses and produce neurotoxicity. Pharmacologic strategies
aimed at attenuating such injury may be of value in the management of CNS trauma and
hemorrhage.
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Fig. 1. Concentration dependence of hemoglobin neurotoxicity. Sister cultures were "
exposed to indicated concentrations of hemoglobin for 24-28 hours. LDH in the culture
media was measured at the end of the experiment (mean + S.EM., n = 8 cultures for each
condition). LDH in this and subsequent figures was scaled to the mean value released by
cultures exposed to hemoglobin 100 uM (=100). Asterisk indicates significant difference
from sham wash control (P < 0.05, Student-Newman-Keuls test).

Fig. 2. Time course of hemoglobin neurotoxicity. Sister cultures were exposed to
hemoglobin 100 uM for indicated time. LDH in the culture media was measured prior to
washout and at 24 hours, and results were summed (mean + S.E.M., n = 4 for each
condition).

Fig. 3. Antioxidant blockade cf hemoglobin neurotoxicity. Sister cultures were exposed to
hemoglobin 100 uM for 24-28 hours either alone (CTRL) or in the presence of indicated
concentrations of trolox or U74500A. LDH in the culture media was measured at the end of

the exposure period (mean + S.E.M., n = 8 for each condition). Asterisk indicates significant

difference from control (p < 0.05, Student-Newman-Keuls test). i

- 4. lron dependence of hemoglobin neurotoxicity. Media LDH (mean +/- S.E.M., n = 8)in

sister cultures after 24-28 hour exposure {0 hemogiobin 100 uM in the presence of indicated
concentrations of deferoxamine, scaled to LDH released in control cultures exposed to

hemoglobin alone (=100). Approximate ICsq for deferoxamine = 3uM.
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